
ICS 340 Program Deliverable C Due Nov 22, 2021

ICS 340 Programming Project, Deliverable C (55 pts)

Specification
Start with your Java program “prog340” which implements Deliverables A and B.

This assignment is based on the definition of the Traveling Salesperson Problem (the TSP): Given a set of
cities, you want to find the shortest route that visits every city and ends up back at the original starting city.
For the purposes of this problem, every city will be directly reachable from every other city (think flying
from city to city).

Your goal is to use a local search algorithm or algorithms from Chapter 4 of Poole & Mackworth to find
the shortest paths that you can. Note that for any reasonably sized problem, you will not be able to try every
possibility, and so you won’t ever know when you have the shortest possible path.

You should have two types of output: Summary Mode and Verbose Mode.

Verbose Mode should print to a file every path you try until your program terminates. Summary mode,
which prints to the console, should print a path only when that path is better than any path that you have
found previously. In all cases, print the single-letter mnemonic of the city (Node), not its full name.

Suggestions
You can start from any city you want, it really doesn’t matter which. For example, you can start from the
first city in the file, since it is the easiest. Create some tour. You can do this randomly, or you can use a
greedy algorithm of some sort, or you can just visit the cities in the order they appear in the file, whatever
you prefer. Your choice probably won’t affect the goodness of your final tour, but it might affect how long
it takes you to get to a good solution.

Selecting and using the techniques of local search, try to find a better tour. Be sure to document what you’re
trying to do.

The rest of this section assumes you want to create your own algorithm. Here are some thoughts on what is
probably the main question: how to step from one possible tour to the next.

• One option would be two swap the order of two cities and see if this shortens the tour

o Mpls. à Seattle à Detroit à Boston à Chicago à Miami à Denver à Mpls.

• Or you could pick one city in the tour, and try removing it and inserting it between every pair of cities
to see which gives the shortest tour.

• There are other forms of Iterative Best Improvement, too.

• When deciding what cities to swap or what city to shuffle, you could use either a 1-stage or 2-stage
choice algorithm.

With any sort of iterative best improvement, there are various techniques you could use if you wish. One
of the big differences among peoples’ algorithms will be their choices to use or not use these techniques,
and the algorithm they use to decide when to use them (for example, how often to do a random step or
restart, temperatures for simulated annealing, etc.)

• You could choose to use Simulated Annealing to decide whether to keep a given tour even if it’s longer
than the existing tour.

• You could inject randomness by sometimes making random permutations (random walk).

ICS 340 Program Deliverable C Due Nov 22, 2021

• You could decide after a certain number of iterations that you should just start over from scratch with
a random order of cities (random restart).

• You could choose to keep a tabu list or not, and if you do, you could choose its size.

• You could keep multiple tours, and permute them in parallel (beam search).

Since you don’t actually know when you have an optimal tour for any reasonably sized problem, you need
to decide on a stopping criterion. Some possible suggestions:

• Stop after some number of steps (where the number of steps might be some function of the number
n of cities).

• Stop after you have gone some number k of steps without improving on your best answer.

• Stop after the program has run for some amount of real-time (measured by something like
System.time.millis()).

Report
You should write a brief report that explains what you did. It should indicate the algorithm you chose, what
techniques you selected and any parameters you used for it. You should discuss how well your algorithm
does (the goodness of your algorithm) based on the results you get.

Don’t Break Existing Functionality
Running Deliverable A and Deliverable B on the test files should still work.

Administrative Details
The “prog340” handout describes the format of the input file for this and all program deliverables.

As always, the program must be written in Java and must run on the University Windows computer systems.
To ensure this I strongly recommend that you:

1. Use only Oracle Java SE, and

2. Test it on the University systems before submission if you have any doubts about its ability to run on
the University Windows.

3. As before, try to minimize disruption to the existing codebase.

Output:
Here is sample output for one graph C5.txt. First, here is the file.
~ Val C H K M P
Cleveland C ~ 1114 700 630 360
Houston H 1114 ~ 644 1056 1341
KansasCity K 700 644 ~ 413 1039
Minneapolis M 630 1056 413 ~ 985
Philadelphia P 360 1341 1039 985 ~

ICS 340 Program Deliverable C Due Nov 22, 2021

As a simple example, suppose that you do the following:

• Start out by traveling the cities in this order: Cleveland, Kansas City, Houston, Minneapolis,
Philadelphia, back to Cleveland.

• Switch the positions of Houston and Kansas City

• Switch the positions of Kansas City and Philadelphia

• Switch the positions of Kansas City and Minneapolis

• Terminate

The verbose output would look like this.
CKHMPC 3745 (random restart)
CHKMPC 3516 (swap)
CPHMKC 3870 (swap)
CPHKMC 3388 (swap)

Shortest path found was CPHKMC with distance 3388 after 4 steps.

The summary output would look like this, only printing the improved tours.
CKHMPC 3745
CHKMPC 3516
CPHKMC 3388

Shortest path found was CPHKMC with distance 3388 after 4 steps.

The verbose output for graph <name>.txt should be written to file <name>_out.txt. The summary output
should be written to the console.

Submit:
Submit a compressed full Eclipse package to the Deliverable C submission folder.

Test Files:
There are four test files that will be used for grading: CD5.txt, CD7.txt, CD10.txt, and CD15.txt. I have
also included a larger file, CD49.txt, for your own testing purposes.

Grading:
40 points for passing the tests “correctly”, i.e. you get good answers that are computed correctly using a
reasonable algorithm in a reasonable amount of time. Yes, there is some subjectivity to this. The design and
complexity of your algorithm will also play a part in this. There are four files at 10 points each, plus 2 points
for Deliverable A and B functionality not being broken; it will be tested on one of the files. Also, 4 points
each respectively for design and documentation, and 5 points for the report.

Due Date:
The program is due on Monday, November 22rd by 2:00 pm in the D2L “Deliverable C” dropbox.

