
CS5200J On-line Machine Learning

Coursework 1

Yuri Kalnishkan

May 17, 2021

This assignment must be submitted by the 31st of May, 10am.
Feedback will be provided on the 15th of June.
The total number of point on the paper is 50. This coursework contributes

15% to the final mark so the coursework result will be scaled accordingly.

Learning outcomes assessed

• understand on-line learning set-up;

• demonstrate advanced knowledge of methods of on-line learning;

• analyse the properties of on-line learning algorithms; develop and apply
performance bounds;

• apply on-line algorithms to real-world data;

• implement machine learning algorithms in MATLAB or Python or R.

Instructions

The coursework consists of two parts:

1. practical part: implementing algorithms and applying them to data;

2. theoretical part: some theoretical problems.

Submission should be done electronically on the CS5200J moodle page.
The programming part can be done using any of the following languages:

MATLAB or Python or R. You programs should work with the version of MAT-
LAB (or R or Python) presently installed on the linux.cim.rhul.ac.uk server.

If you want to use a different language, get a permission from the course
lecturer first.

You should submit files with the following names:

1

• beta_dynamic.m (or beta_dynamic.py if you use Python or beta_dynamic.r
if you use R) should contain the source code you used for calculating betas;

• gamma_dynamic.m (or .py or .R) should contain the source code you used
for calculating gammas;

• if you use Python, you can submit a Jupyter notebook dynamic.ipynb

with the functions named beta_dynamic and gamma_dynamic instead;

• mismatch.m (or .py or .R) should contain the source code you used for
calculating gammas; all auxiliary functions should be submitted too. Al-
ternatively, you can add a function mismatch on dynamic.ipynb.

• results.txt should contain all the values which you are asked to find
and all the comments you would like to add; use the template from the
course web site and fill in the answers where question marks are (do not
change the layout of the file because it will be processed by a script);

• theory.pdf (or one of the formats doc, docx, rtf, txt, ipynb; jpg scans
or photos of handwritten notes are also acceptable) should contain the
answers to the theoretical problems. It is the student’s responsibility to
check that the file to be submitted can be opened. The mark will be set
to 0 if the file is either in a wrong format or not readable. It is your
responsibility to ensure that the scan or photo is legible.

NOTE: The coursework assignment is strictly individual. Plagiarism and collusion
will be prosecuted. Coursework submissions are routinely checked for plagiarism.
Note that using someone else’s code with altered variable names is still a case of
plagiarism and is not acceptable.

You must not use existing library functions for calculating alphas, betas,
gammas, or Viterbi maximum posterior probability path.

Marking Criteria

In the practical part, full marks are awarded only when the code is correct and
applied to the input data in a correct way. The results should be close to the
correct values.

In the theoretical part, full marks are awarded only when it is clear how you
have arrived at the final answer. Simply giving a result without any justification
is unlikely to get you full marks.

2

1 Practical Part

1.1 Beta

Implement a dynamic programming function calculating coefficients beta for a
hidden Markov model. See Slide 28 of Class 2 for a definition.

Use the following header (or a close equivalent if you are using R).

function b = beta dynamic(M,p,B,v)

% BETA DYNAMIC(M,p,B,v) calculates the matrix of betas for the hmm with
% transition matrix M, emission matrix B, and initial probabilities
% p, given the observations v

or

def beta dynamic(M,p,B,v):

BETA DYNAMIC(M,p,B,v) calculates the matrix of betas for
the hmm with transition matrix M, emission matrix B, and
initial probabilities p, given the observations v

This function will output the N × T matrix of betas.
[10 marks]

1.2 Gamma

Implement a function calculating coefficients gamma for a hidden Markov model.
See Slide 29 of Class 2 for a definition.

Use the following header (or a close equivalent if you are using R).

function g = gamma dynamic(alpha,beta)

% GAMMA DYNAMIC(alpha,beta) calculate gamma for hmm given alpha and beta

or

def gamma dynamic(alpha,beta):

GAMMA DYNAMIC(alpha,beta) calculate gamma for hmm given
alpha and beta

The header is written in this way so that one could run the function as fol-
lows: g = gamma_dynamic(alpha_dynamic(M,p,B,v),beta_dynamic(M,p,B,v)).

This function will output the N × T matrix of gammas.
[10 marks]

1.3 HMM Example

The files M.txt, B.txt, and p.txt contain the transition matrix, the emission
matrix, and the initial probabilities for a hmm with 12 hidden states and 15

3

observable states. The file v.txt contains a sequence of 10 observed states (it
is assumed that the states are numbered from 1, not from 0). You can read the
files using M = dlmread(’M.txt’) in Matlab or M = np.loadtxt("M.txt") in
Python. For v in Python you will need to explicitly convert the numbers to
integers: v = np.loadtxt("v.txt").astype(int).

Run your functions on this data and calculate the matrices of betas and
gammas. Get the values β8(6) and γ7(5). (Note that in this notation indices
start from 1.) Enter the values on the template results.txt where question
marks are and include the file in your submission.

[4 marks]

1.4 Mismatch: When Viterbi does not Maximise Gammas

This is a harder problem requiring more difficult programming.
Given a sequence of observations v = (v1, v2, . . . , vT), there is no unique

way to recover the sequence of hidden states h = (h1, h2, . . . , hT). One can use
Viterbi and find h achieving the maximum Pr(h | v). An alternative approach
is to build h from component-wise maximums so that ht = arg maxs∈S Pr(Ht =
s | v), t = 1, 2, . . . , T . These methods do not have to return the same result.

For the Markov model with the transition matrix, emission matrix, and the
vector of initial probabilities given as follows

M =

(
0.75 0.25
0.3 0.7

)
,

B =

(
0.3 0.3 0.2 0.2
0.1 0.3 0.4 0.2

)
,

p =

(
0.4
0.6

)
calculate the number of sequences of observations of length 5 such that these
two methods return different sequences of hidden states.

Make sure you submit all your code.
[7 marks]

2 Theoretical Problems

You may use MATLAB or Python to get a hint or to verify your result, but you
should submit calculations worked out on paper.

1. The following weather observations were made over twelve consecutive
days: sunny, sunny, cloudy, rain, rain, sunny, sunny, cloudy, rain, rain,
cloudy, rain.

(a) Assuming that this sequence was generated by a first-order Markov
chain with three states, “sunny”, “cloudy”, and “rain”, find the max-
imum likelihood estimate of the transition probabilities. [4 marks]

4

(b) Use the transition probabilities to work out the probabilities of the
thirteenth day being sunny, cloudy, and rainy (you need to calculate
three probabilities). [2 marks]

2. Consider a hidden Markov model with two hidden states s1 and s2 and
three visible states x1, x2 and x3. Let the transition matrix be

M =

(
0.8 0.2
0.3 0.7

)
,

the emission matrix be

B =

(
0.3 0.4 0.3
0.2 0.3 0.5

)
,

and the matrix of initial probabilities be

p =

(
0.4
0.6

)
.

Suppose that a sequence of visible states x2, x3, x1 has been observed.
Calculate:

(a) the coefficients α for time 3; [5 marks]

(b) the probabilities of the hidden state at time 3 being s1 and s2 con-
ditional on the visible states observed; [3 marks]

(c) the probabilities of the hidden state at time 4 being s1 or s2 condi-
tional on the visible states observed. [3 marks]

3. Apply smoothing with the window of size (= order) 3 and equal weights
to the time series 4, 5, 2, 5. You do not need to calculate smoothed values
for the endpoints. [2 marks]

Total marks: 50.

5

	Practical Part
	Beta
	Gamma
	HMM Example
	Mismatch: When Viterbi does not Maximise Gammas

	Theoretical Problems

